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Effect of wire separation on X-probe 
measurements in a turbulent flow 
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The effect of the separation between hot wires in a crossed wire or X-probe on 
Reynolds stress measurements has been studied analytically and experimentally. Wyn- 
gaard’s (1968) spectral analysis, which assumes isotropic turbulence, has been modified 
to include the effect of the tangential velocity component and possible asymmetries of 
the probe. The relaxation of the assumption of isotropy to one of homogeneity allows 
corrections to be made to Reynolds stress measurements obtained when the separa- 
tion between the wires is in the spanwise direction. Measurements with two inclined 
hot wires in the central region of a fully developed turbulent channel flow provide 
reasonable support for the modified analysis. In the anisotropic wall region, the 
measurements provide reasonable support for the correction ratios which have been 
derived by assuming that turbulence is homogeneous in a plane parallel to the wall. 

1. Introduction 
Crossed wires or X-probes are commonly used for measuring two components of 

the fluctuating velocity vector in turbulent flows. The accuracy of the measurement 
depends, in general, on the following factors (e.g. VukoslavCevii & Wallace 1981; 
Perry 1982; Nakayama & Westphal 1986; Browne, Antonia & Shah 1988; Antonia 
1991; Park & Wallace, 1992; Tagawa, Tsuji & Nagano 1992) 

(a )  rectification or the insensitivity of the hot wires to the direction of the instan- 
taneous velocity vector in a turbulent flow; 

(b )  influence of the tangential (along the length of each wire) and binormal velocity 
components (normal to the plane of the wires); 

(c) probe geometry, such as wire length, wire diameter, the separation between the 
two wires and the effective angles of the two wires. 

The errors due to rectification and the influence of the binormal velocity component 
have been studied by several authors (e.g. Bruun 1972; Tutu & Chevray 1975; Kawall, 
Shokr & Keffer 1983; Swaminathan, Rankin & Sridhar 1986; Tagawa et al. 1992). 
The effect of geometry, especially the separation between the wires, on measured 
turbulence statistics has also been investigated, e.g. Wyngaard 1968; Bremhorst 1972; 
Nakayama & Westphal 1986; Westphal 1990; Suzuki & Kasagi 1990; Tagawa et al. 
1992. Wyngaard (1968) proposed a correction method for the lengths of the hot wires 
and for their separation. Isotropic turbulence and a first-order approximation for 
the X-probe response equations were assumed. The cooling effect of the tangential 
and binormal velocity components was neglected. Also, the X-probe was assumed 
to be symmetrical about the streamwise flow axis x. Bremhorst’s (1972) proposal 
for correcting the measured Reynolds stresses and their spectra requires a knowledge 
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of two-point velocity correlations within the volume occupied by the X-probe. Such 
data have only recently become available through direct numerical simulations (DNS). 
Westphal (1990) used Wyngaard's response equations and derived correction ratios 
for the Reynolds stresses by assuming a simplified (homogeneous) form of two- 
point velocity correlations. Suzuki & Kasagi (1990) included the tangential velocity 
component in the response equations and used DNS correlation data (Kuroda, 1990) 
for evaluating correction ratios. 

In the analyses of Bremhorst, Westphal and Suzuki & Kasagi, isotropy was not 
assumed but the effect of the binormal velocity component was neglected, and a 
symmetrical configuration of the X-probe was used. Browne et al. (1988) investigated 
the effect of separation on the measured Reynolds stresses in the self-preserving 
wake of a circular cylinder. The effect on 2 and 7 was in qualitative agreement 
with that predicted from the analyses of Westphal (1990) and Suzuki & Kasagi 
(1990). However, the experiment was confined to the use of only one particular 
X-probe configuration (approximately symmetrical wires at f45" to the x axis) and 
one measurement location where the departure from isotropy was small (Antonia, 
Browne & Shah 1988~;  Antonia, Shah & Browne 1988b). Moreover, Browne et al. 
noted that the one-dimensional spectral response curves obtained using Wyngaard's 
analysis indicated trends for the Reynolds normal stresses which were opposite to 
those of the measurements, apparently implying that the analysis is not suitable for 
correcting X-probe data for the effect of wire separation. This inadequacy cannot be 
due to the inappropriateness of the isotropy assumption since Wyngaard's analysis 
for the effect of the separation between parallel hot wires on the measurement of 
velocity derivatives has received good experimental support in flow regions where 
local isotropy (or isotropy of the small scales) is satisfied approximately (Zhu & 
Antonia 1992, 1993; Zhu, Antonia & Kim 1993; Antonia, Zhu & Kim 1993). One 
would therefore expect it to be associated with the other assumptions (first-order 
response equations, perfect symmetry). One aim of the present paper is to assess the 
impact these assumptions have on Wyngaard's analysis for X-probes. Another aim is 
to relax the assumption of isotropy in order to provide a means of correcting X-probe 
data in flow regions where the departure from isotropy is significant. 

Wyngaard's analysis is first modified by taking into account the cooling due to the 
tangential velocity component and the effect of possible asymmetries in the X-probe 
configuration, although high order terms in the cooling equations are neglected. 
Correction ratios for the Reynolds stresses are then derived using an empirical 
procedure which allows measurements of the Reynolds stresses to be corrected in 
flow regions which do not satisfy isotropy but which are approximately homoge- 
neous in a plane parallel to the wall. The results from the analyses are compared 
with measurements in a fully developed turbulent channel flow. This flow was 
chosen partly because the Reynolds shear stress can be estimated with relatively 
good accuracy from measurements of the streamwise pressure gradient and partly 
because there are several DNS data bases which are available for this flow. The 
X-probe Reynolds stress data are also compared with those from other types of 
measurements, such as LDV (laser Doppler velocimetry) and PIV (particle image 
velocimetry). 

2. Experimental details 
Measurements were made in a fully developed turbulent channel flow (a definition 

sketch is shown in figure la) at a Reynolds number of 3300 (Re = Uoh/v,  where h 
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FIGURE 1. Definition sketch: fully developed channel flow (a) and X-probe configuration (b) .  

is the channel half-width, UO is the velocity at the centreline and v is the kinematic 
viscosity), which is comparable to the values used in simulations and measurements 
(with LDV and PIV techniques). The working section of the duct is 7.32 m long, 0.76 
m high and 0.042 m wide (aspect ratio = 18). The measurement location x / h  (x is 
measured from the entrance to the working section) is 330. At this location, the flow 
is fully developed (e.g. Shah 1988). The channel aspect ratio is sufficiently large to 
ensure two-dimensionality of the mean flow (Teitel & Antonia 1990). 

A single hot wire was used to measure the streamwise mean velocity and velocity 
fluctuation. For the measurement of the lateral velocity component, two inclined 
hot wires were arranged to form an X-probe. One of the wires was mounted on 
a traversing mechanism, while the other one was mounted on a separate (smaller) 
traversing mechanism (built in-house) which is fixed to the first traversing mechanism 
(Mitutoyo). In this way, the two wires could be moved as part of a single (fixed 
separation) probe to any location in the flow. Both traversing mechanisms have a 
least count of 0.01 mm. The spacing between the wires could be accurately varied 
using the smaller traversing mechanism and the initial spacing was measured by a 
theodolite (uncertainty kO.01 mm). The initial distance between the X-probe and the 
wall was measured using a theodolite and a reflection method. 

The 2.5 pm diameter Wollaston Pt-10% Rh wires were used for all the probes. The 
wires were etched to an active length of 0.45-0.5 mm, and wires were operated at an 
overheat ratio of 1.5 with in-house constant temperature circuits. DC offset voltages 
were applied to the signals from these circuits before amplification and low-pass 
filtering at a cut-off frequency of 100CL1600 Hz. The signals were then digitized on an 
IBM-compatible PC using a 12 bit A/D converter at a sampling frequency 2-3 times 
greater than the filter frequency and subsequently transferred, via an ETHERNET 
optical link, to a VAX 780 computer for further analysis. 
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Velocity and yaw calibrations of the X-probe were carried out at the centre of 
the channel. The wires were in the (x,y)-plane and separated in the z-direction. A 
Pitot tube, connected to a Furness pressure transducer, was located on the channel 
centreline. The transducer output and the outputs from the wires were digitized at a 
sampling frequency of 100 Hz/channel. 

3. Theoretical analysis for isotropic turbulence 
The configuration of the X-probe is shown in figure l(b). pi ( i  = 1,2) is the 

effective angle between the wire axis and the streamwise direction. For convenience, 
the following assumptions are made : 

(i) the wires lie exactly in the (x,y)-plane; 
(ii) the sensitivity of each wire is uniform over the length of the wire; 
(iii) the flow is homogeneous in the (x,z)-plane, which is parallel to the wall 

(normal to the plane of the X-probe); 
(iv) the mean velocities in the wall-normal and spanwise directions _ _  are much 

smaller than the mean velocity in the streamwise direction, i.e. V / U  << 1, W / U  << 1; 
(v) Jorgensen's (1971) equation for the effective cooling velocity is valid, i.e. 

(3.1) 

where the subscript i denotes the wire number (i = 1,2), Ue stands for the effective 
cooling velocity; U N ,  UT and UB are the normal, tangential and binormal velocity 
components respectively; k, and h, are the yaw and pitch factors. 

Owing to assumption (iv), the three components of the velocity vector for the ith 
wire are oi = ui + ui, 6 = ui, 

Uzl = [(UI + u1) sin P I -  u1 cos P1l2 + k i1  [(U1+ u1) cos p1 + u1 sin p1I2 + hi ,  w: , (3.2) 

- -  

Uzi = U i i  + k;, U$, + h:( U i L  , 

= wi. Equation (3.1) can be re-written as 

Ue', = [(u2 + 242) sin p 2  + u2 cos p2I2 + ki2 [(u2 + u2) cos p 2  - u2 sin p2I2 + ht2w; . (3.3) 

for wires 1 and 2 respectively. Using the binomial theorem, (3.2) and (3.3) can be 
expressed as 

where R1 and R2 represent higher-order terms. Since R1 and R2 are normally small, 
their contributions to the total cooling effect can be neglected. For example, for a 
fully developed turbulent channel flow at Re = 3300 (Kim, Moin & Moser 1987), 
the maximum turbulence levels are ut /U = 0.35; u'/U = 0.07 and w'/U = 0.08 
respectively (hereafter, the prime denotes the root-mean-square value of the velocity 
fluctuation). The cooling effect due to the higher order term amounts to only 3-5% 
and can be neglected. From (3.4) and ( 3 3 ,  the fluctuating effective velocities are 

uq =Ku1~1 -Kulul (3.6) 
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where 

K,, = (sin2 pi + kii cos2 pi)1/2 , 
and 

sin pi cos pi 
Kui = (1  - k i i )  ( i  = 1,2) . 

K,, 
The measured velocity fluctuations urn and urn, which are obtained by neglecting 

line averaging and the separation, are related to the true velocity fluctuations ui, ui 

(for the ith wire) by the following relations (e.g. Bremhorst 1972; Suzuki & Kasagi 
1990) 

(3.9) K,, urn - K,, urn = K,, ~1 - K,, 01 , 

KU2um + KUZvm = K U Z ~ 2  + K,,v2 . (3.10) 

The introduction of K1 = K,,/K,, and K2 = K,,/K,, allows K1 and K2 to be 
expressed in a more general form, viz. 

tan pi 
Ki = (1 - k i ; )  

k;, + tan2 pi ' 

After solving (3.9) and (3.10) for urn and urn, we obtain 

Um = K2U1+ KlU2 v2 - u1 

+ K1K2 K1+ K2 K1 +K2 

(3.11) 

(3.12) 

(3.13) 

When k,; = 0 and p1 = p2 = p, K1 = K2 = cotp, the above equations reduce to the 
simplified form adopted by Wyngaard (1968), viz. 

(3.14) 

(3.15) 

The spectral forms of (3.12) and (3.13) can be obtained by using Fourier-Stieltjes 
expressions about the X-probe centre ZO. For example, u1 and v1 can be written as 

J -W 

rn 
u1 = [ e*"O eik*d/2 AldZz(k) , (3.17) 

J --a, 

where A1 = sin(k * d1/2)/(k t1/2) ,  k is the wavenumber vector and 81 is the wire 
length vector for wire 1. True and measured spectral density tensors are defined by 

4ij (k)dk = dZi(k)dZ,: (k )  (3.18) 

+;(k, 8)dk = dZy(k, 8)dZT*(k, 8) , (3.19) 
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where dZi(k) and dZy(k, 8)  are the true and measured Fourier-Stieltjes compo- 
nents, and the asterisk denotes a complex conjugate. For example, dZr(k,e)  = 
dk'd/2AldZl(k). The spectral forms of (3.12) and (3.13) can now be written as 

(Ki + K2)24r1(k) = [A$: + ATK,' + 2K1K2AiA2 cos(k * 4]41i(k) 
+ 2KiK2[KiA; - K2AT + (K2 - K I ) A ~ A z  cos(k * 4]412(k) 
+ K:K;[A: + A: - 2 u 2  C O S ( ~ .  d ) 1 4 ~ ~ ( k )  , (3.20) 

(K1 + K2)24T2(k) = [2K'K2('4: + 4) + (K2 - Kd2-41A2 cos(k * 41412(k) 
+ [KIA: - K2A: + (K2 - Ki)AiA2 cos(k * 4]41i(k) 
+ KiK2[K2A: -KIA: - (K2 - Ki)AiA2 cos(k * 4]422(k) 

+ (K,' - K:)A'A2412(k)} sin(k * 4 , (3.22) 

where j = m, Ai = sin(k.ei/2)/(k.ei/2). The true cross-spectrum 4ij(k) is assumed 
to be symmetrical with respect to its indices so that 421(k) = 412(k). The measured 
cross-spectrumt 4Y2(k) contains a real part or cospectrum and an imaginary part 
or quadrature spectrum. Since both parts are affected by the probe geometry, the 
phase between u and u, which is equal to tan-' (quadrature spectrum/cospectrum), 
may also be affected. The second terms on the right of (3.14) and (3.15) were 
referred to by Wyngaard (1968) as cross-talk terms. Equations (3.20)-(3.22) clearly 
show the presence of cross-talk between u and v in the measured spectra. For 
instance, 4yl(k), equation (3.20), contains contributions from 4&) and 422(k). The 
cross-talk arises not only because of the finite separation between the hot wires but 
also as a result of the wire length since the line averaging paths differ for the two 
wires. 

Up  to this point, isotropy has not been assumed. However, (3.20)-(3.22) can be 
used for determining 4Y1, 4T2 and 4Y2 only if the true spectra are known. This is 
feasible if isotropic turbulence is assumed. In this case, the true spectrum +ij(k)  is 
given by (e.g. Batchelor 1953) 

+ j { K  + K2)A1A2411(k) + KIKz(KI+ &MA2422(k) 

(3.23) 

where k = (k: + k i  + kj)1/2 is the magnitude of k and E(k) is the three-dimensional 
energy spectrum. 

Correction ratios for the one-dimensional spectra c$r(kl) and +:(kl) ,  where $r(kl) = 

JS-", 41;(k)dk2dk3 and $T(kl) = JJzm +y2(k)dk2dk3 and for the Reynolds stresses grn 
and 3m can be introduced, viz. 

t To our knowledge, the expression for &(k) has not been considered in previous analyses. 
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(3.26) 

-m 
V 2  

02 
y u - - - 1: 4:'(kl)dkl/ 1: 4dki)dki . 

The correction ratios for one-dimensional cospectra Co,,(kl), where Co,,(kl) = 

JJ:00412(k)dk2dk3, and mrn are not given since these two quantities are zero for 
isotropic turbulence. The integrals in (3.24) to (3.27) can be evaluated numerically 
if E(k) is known. There are several ways in which E(k) can be estimated, each one 
leading to virtually the same result. One possibility is to use (e.g. Antonia, Browne & 
Chambers 1984) 

(3.27) 

(3.28) 

and a known distribution of 4,(k1). 
Equations (3.20)-(3.22) take into account the effect of the tangential velocity 

component and the possible asymmetry of the X-probe. They should be more 
generally applicable than Wyngaard's analysis which used only a cosine response 
equation (according to Lomas 1986 this is adequate only when the wire aspect ratio 
is greater than 600) and assumed symmetry of the X-probe about the flow direction. 

4. Correction for homogeneous turbulence 
Although the spectral analysis presented in $ 3 does not assume isotropy, its practical 

implementation requires this assumption. Obviously, this assumption will break down 
near a wall. Therefore, it is not possible to correct the measured spectra of u and v 
using the results of $3. However, correction ratios for the Reynolds stresses can be 
derived directly from (3.12) and (3.13) which should be valid in the wall region since 
the effect of the mean velocity gradient (e.g. VukoslavCeviL & Wallace 1981; Park & 
Wallace 1992) is small. Grn and 7m can be obtained by squaring and then averaging 
(3.12) and (3.13) respectively while mrn is obtained by multiplying (3.12) and (3.13) 
and then averaging. The wire length effect is neglected for simplicity. The correction 
ratios for the Reynolds stresses are as follows: 

2 2 v L  
= {K:  + K ;  + 2K1K2pu,(d) + 2K,K, = [l  - p,,(d)] 

U2 
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- 
U2 

V 2  
= {K: + K ;  + 2K1K2puti(d) + 2= [l  - puu(d)] 

-m uv 
uv 

ru, = = 

- - 
V 2  V2  + KlK2W2 - K l ) h  + KlK2Gl  - K2)&dd) 

+ (K2 - K l ) ~ [ K 2 p u u ( d )  - K1ptiu(41}/(& + K2I2 , 
u’v’ 

(4.3) 

where puu, pt,ti, puu and puu are correlation coefficients defined as follows: 

Hereafter, the dependence on y is omitted for convenience of writing. 
Because of the assumed homogeneity, puu(d) = p,,(d). When the asymmetry is 

small, K2 - K1 << K1, K 2  - K1 << K2. As a result of the previous approximations, the 
last two terms on the right of (4.1) and (4.2) can be neglected. In (4.3), the second 
and third terms on the right cannot be neglected since 2 may be considerably greater 
than 7 and m, especially near the wall. Nonetheless, the last three terms should be 
much smaller than the first three and (4.1)-(4.3) may be simplified to 
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Only spanwise homogeneity has been assumed in (4.8)-(4.10). These equations 
should be applicable everywhere in the flow. One exception is the use of (4.10) on the 
channel centreline, where UV is zero (by symmetry); in this case, the expression for UVm 
should still be valid. The evaluation of these ratios requires a knowledge of the two- 
point correlation coefficients p,,(d) and p,,(d) and parameters u2/u2 and $/UV. The 
available DNS database (e.g. Kim et al. 1987) and data provided by Dr J. Kim (private 
communication, 1993) can be used for obtaining this information. An encouraging 
feature of the data is the almost negligible dependence of puu(d+) and pUU(d+)  on the 
Reynolds number in the wall region. This suggests that the proposed correction pro- 
cedure should be reasonably accurate when it is applied to experimental data obtained 
at higher Reynolds numbers than those at which the simulations were made. Without 
DNS data, p,,(d) can be measured with two parallel hot wires, though with some diffi- 
culty when d is very small. The accurate measurements of p,,(d) would pose some diffi- 
culty especially in the wall region. However, it may be possible to use the self-similarity 
idea of Hunt et al. (1987) to determine the shape of the correlation puu in this region. 
These authors found that u-correlations between two points y, yl (y1 > y) assume an 
approximately self-similar form v(y)u(y1)/u2(y1) = f(y/yl), independently of yl ; the 
ratio u(y, d)u(y, O)/u(y, O)u(yl, 0) is also self-similar and independent of z.  A knowledge 
of these ratios should allow estimates of p,,(d) to be made in the wall region. 

5. Results for isotropic turbulence 
The correction ratios hU, &,", r, and Y, are calculated for isotropic turbulent flows 

via (3.24)-(3.27) respectively. E ( k )  was calculated from the DNS data for $, via 
(3.28). Practically the same distribution for E ( k )  resulted when a distribution of 4,, 
measured with a single hot wire, was used as the input to the calculation. 

Figure 2(a,b) shows the effect of wire length on the spectral correction ratios hu 
and 4" for different values of k ;  ( k ;  = k l q ;  q is the Kolmogorov length scale 
v3/4/F1/4; F is the average energy dissipation rate; q is about 0.38 mm at the channel 
centreline and 0.20 mm near the wall; the asterisk denotes normalization by q and 
the Kolmogorov velocity scale UK = = p2 = 45". In this case, k,, 
and k,, are set equal to 0.2 when evaluating hU and &," from (3.24) and (3.25). It 
should be noted that the tangential cooling coefficient k ,  in the cooling equations 
normally depends on the effective angle, a, between the velocity vector and wire 
axis, the type of probe and the mean velocity. Allowing for the experimental scatter, 
available data for k ,  (e.g. Champagne, Sleicher & Wehrman 1967; Jorgensen 1971; 
Bruun 1972; Andreopoulos 1983; Bruun & Tropea 1985; Hishida & Nagano 1988) 
show that k ,  decreases almost linearly with a and varies significantly for different 
probe types, although the velocity dependence is relatively small. For the present 
probe type, which is similar to that (55Fll) of Jorgensen (1971) or that (55P01) of 
Bruun & Tropea (1985), k ,  decreases between about 0.3 when a = 20" and 0.1 when 
a = 80". It is therefore inappropriate to choose a constant value of k ,  for different 
effective angles (this will be discussed later). Strictly, k ,  varies instantaneously with a 
in turbulent flows; it would be difficult to include the instantaneous variation of k ,  
into the calibration procedure and the spectral expressions. For simplicity, we have 
assumed an average value of k ,  for an average effective angle (e.g. Bruun & Tropea 
1985; Browne et al. 1988). In all the calculations, average values of 0.2 and 0.24 were 
used for k,, corresponding to average values of a of 45" (or p = 45") and 30" (or 
p = 60") respectively. 

when 
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FIGURE 2. Effect of wire length on the spectral correction ratios 4" and 4". (a) &; (b)  4". 
-, Calculation using (3.20) and (3.21); - - -, calculation using the spectral expressions of Wyngaard 
(1968). 

Figure 2(a,b) also shows the calculations of hU and R#," using Wyngaard's spectral 
expressions (i.e. equation (15) in Wyngaard 1968). The separation is set equal to 
zero to focus only on the length effect. The wire length attenuates & and $u  at 
all wavenumbers, the attenuation being generally larger at higher wavenumbers. 
There is very little difference between the distributions of lQu, Rb0 calculated from the 
present spectral expressions and those obtained from Wyngaard's spectral expressions 
(with the same E ( k ) ) .  When the separation is taken into account, 4u (figure 3a) is 
overestimated fork; 2 0.15 and underestimated fork; 5 0.15, these changes increasing 
with separation. Opposite trends are observed for 4u (figure 3b). Figure 3 also shows 
the distributions of Rbu and &", calculated from Wyngaard's spectral expressions. In 
the latter case, hU is overestimated and Rho is underestimated at all wavenumbers, 
indicating that the yaw factor has a non-negligible effect on 4" and hU. As a check 
of the integrations involved in (3.24) and (3.25), calculations were also carried out 
with PI  = p2 = 45" and k,, = k,, = 0 in (3.20) and (3.21). As noted earlier, these 
equations become identical to those of Wyngaard. The calculations (not shown here) 
for L' = d and 8 = 2d are also in quite good agreement with those of Wyngaard. 

The large difference between the behaviour of &,(kl) and &"(kl)  is due to the 
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4 3 1 )  = i 4 u ( k l )  + +4"(kl)  - 3 JLI cos(k * d)[+ll(k) - 422(k)ldk~dk3 . (5.2) 

These expressions differ from those given by Wyngaard, which did not contain the 
integral terms (as will be shown below, their values are not negligible). When 
estimating these integrals, it is always possible to find a constant ( (0 < ( < 1) so that 

JLI cos(k * d)[+ii(k) - $22(k)ldk2dk3 = ~ [ + u ( k i )  - 40(ki)1 . (5.3) 
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FIGURE 4. Ratio of spectra of u and u :  -, present; - - -, Wyngaard (1968). 

The resulting correction ratios are 

&Ju = ;(I + 0 + - 0 + U / h  (5.4) 

4" = ;(I + i) + - 5 ) 4 u / 4 u  . (5.5) 
when d = 0, ( = 1 and 4" = 4" = 1. The ratio $ u / + u ,  evaluated from the DNS 
distribution for E ( k ) ,  is compared in figure 4 with Wyngaard's (1968) calculation 
obtained with Pao's (1965) form of E(k). 

At k ;  = 0, this ratio assumes a value of i, viz. 

which is a consequence of isotropy. The ratio increases rapidly with increasing k ; .  The 
discrepancy between the two calculations at high wavenumber is due to the difference 
between the two distributions of E(k) (e.g. Antonia et al. 1993). The familiar value 
of 4/3 for the inertial range, as predicted by Wyngaard (1968), is not observed in 
the present calculation since the present &(kl) data do not exhibit an inertial range 
(due to the low Reynolds number). In the extreme case when ( = 0, 4" = 3/4 and 
4" = 3/2 for k; = 0 while Rbu + 00 and 4" + 1/2 as k; + 00. This means that for 
a symmetrical 45" X-probe, 4u would be underestimated (maximum 25%) at small k ;  
and greatly overestimated at large k; ; $u would be overestimated (as much as 50%) 
at small k;  and underestimated (maximum 50%) at large k ; .  This behaviour is clearly 
reflected in the distributions of figure 3. It should be noted that the 4" and 4" 
distributions (figures 2 and 3) are for = p2 = 45" only. When p1 and p 2  increase, 
the general shapes of and 4" are similar to those for p1 = p 2  = 45", but the 
errors in q5u and 4" are larger (these results are not shown here). 

Figure 5 shows the correction ratios of 3 and 2 for p1 = p 2  = 45" and 60" 
and those evaluated using Wyngaard's spectral expressions. The wire length - -  has 
been neglected since 8' is normally in the range 1 to 4, and the effect on u2, u2 
is small (< 1.5%). The ratios depend on the magnitudes of the effective angles. 
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FIGURE 5. Distributions of the calculated correction ratios ru and I ,  (lines) and comparison with 
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-, - -, +, 0. 81 = 8 2  = 60" : - - -, - - -, m, 0. 

The combination = p2  = 45" appears to be optimum since ru and r, are nearly 
equal to 1, i.e. the measurements should be virtually error-free. Different angle 
combinations may however result in significant errors. For the same separation, the 
combination p1 = 60" 8 2  = 60" may result in larger experimental errors than the use 
of p1 = p 2  = 45". For example, figure 5 shows that, for d' = 4 and d' = 8, the values 
of ru for the first combination are about 2% and 8% smaller than for the second. 
For the first combination, the values of r, are about 10% and 30% bigger than for 
the second. For a particular effective angle, the choice of k ,  may affect the calculated 
correction ratios. The present calculations show that an increase in k ,  value generally 
results in an increase in r, but a decrease in r,. The difference is more pronounced 
for r,. Thus, the use of a constant value of k ,  for different effective angles may result 
in errors in the correction ratios due to the effective angle dependence of k ,  (e.g. for 
d' = 8 and p1 = p 2  = 60", r, may be underestimated by 8% if k,  = 0.2 is used instead 
of 0.24). In general, Wyngaard's spectral expressions underestimate r, but overestimate 
r,. This indicates that the inclusion of k ,  in (3.1) has a non-negligible effect on r, 
and r,. Especially for a conventional X-probe, Wyngaard's results suggest that 2 and 
u2 are measured correctly (since r, = I ,  5 1 for all separations when p1 = p 2  = 45"). 
However, Browne et al. (1988) reported that Wyngaard's calculation resulted in an 
increase in ?m as d increased (a trend opposite to their measurements). To check 
this conclusion, calculations were done using Wyngaard's spectral expressions and 
including wire length effects (8 = d and / = 2d). It was found that r, and r, are less 
- than 1, the deficit tending to increase with increasing /, indicating that both 2 and 
u2 are underestimated. This invalidates Browne et al.'s observation. The authors were 
apparently misled by the significant increase at high wavenumbers (figure 3) ; although 
the attenuation of 4: at small wavenumbers is relatively small, its contribution to ?m 
is dominant. Browne et d ' s  conclusion that Wyngaard's corrections are not suitable 
for correcting X-probe data for the effect of wire separation is also incorrect since 
it will be shown below that a suitably modified version of Wyngaard's analysis is in 
fact closely validated by experiment. 

In order to check (3.20), (3.21) (3.22), measurements were made at the channel 
centreline where isotropy is nearly satisfied, with respect to both the large scales 
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and, more especially, the small scales (Antonia & Kim 1992, 1993). In the present 
experiment, we concentrated on measuring the Reynolds stresses in the (x, y)-plane, 
i.e. the plane of mean shear, although the analysis in $3 applies equally well to the 
(x,z)-plane. Measurements were first made to check the effect of varying d on the 
effective wire angles. These angles were nearly constant (k5%)  when the separation d' 
is in the range 1 to 10. However, at very small separations (d' 5 l), the effective angles 
decrease by 30%, probably due to thermal wake interference between the wires. To 
avoid this extraneous influence, only separations in the range of d' 3 1 can be used. 

Experiments were made for the following combinations : p1 = 45", p 2  = 45" (Case 
A); p1 = 48", p 2  = 55" (Case B); p1 = 54", p 2  = 60" (Case C). 

Figures 6a and 6b show measured and calculated values of ru and ru for the three 
cases. In the calculations, k,, and k,, are set equal to 0.2 for Case A;  k,, = 0.21, 
k,, = 0.23 for Case B and k,, = 0.23, k,, = 0.24 for Case C. The wire length effect has 
been neglected in the calculations (for the present experiments, the length is about 
1 . 5 ~  and the errors in 2 and 3 would be less than 0.5%). The denominator, in (3.26) 
was measured with a single hot wire. Since the wire length is small ( 1 . 5 ~  - 3.0~) ,  the 
measured value can be identified with the true value. The denominator in (3.27) is 
difficult to obtain. However, since the X-probe values of 2"' in the _ _  range d* = 2 - 3 
were very close to those from a single hot wire, and the ratio u2/u2 in this range 
agrees well with the corresponding DNS data, we have assumed that zm 1: u2 for 
this range. The calculations agree with the measurements in the range d' = 2 - 8, 
in support of the modified form of Wyngaard's analysis. Figure 6(a,b) also shows 
that, for a given value of d', the larger the effective angle, the larger the errors in 
the stresses. This suggests that a symmetrical 45" probe should be preferred to the 
other configurations (with the rider that the cone angle of the instantaneous velocity 
vector does not exceed 45", e.g. Antonia et al. 1992). The rapid increase in the 
measurements for d' 5 2 is probably due to the interference between the wires and 
their supports and the possible contamination from electronic noise. This increase 
is spurious and underlines the need to avoid separations smaller than d' 5 2 if the 
Reynolds stresses are to be estimated reliably. Figure 6c shows the measured values 
of m"' (in general, the superscript + denotes normalization by wall variables : the 
friction velocity U,, and the kinematic viscosity v )  as a function of d'.  The rapid 
increase is again observed at small separations, but the effect of d' is very small when 
d* B 2; for the three cases, m"' is nearly constant and close to zero (the expected 
value on the channel centreline). 

Figure 7 shows measured (d' = 4) and corrected one-dimensional spectra of u 
and u for Case A. The corrected spectra were obtained by dividing the measured 
spectral densities by the ratios R4n and &", calculated from (3.24) and (3.25). For 
high wavenumbers, 4:(kl) is overestimated while is underestimated. It was 
also verified, from the variable separation experiment, that the errors increase with 
separation. The corrected spectral distributions (not shown) collapse very nearly onto 
one curve, which corroborates the present modification. 

- 

6. Results in the wall region 
In the wall region, (4.8), (4.9) and (4.10) can, in principle, be used to correct the 

measured data. The DNS two-point correlation coefficients puu and puu are shown in 
figure 8 at y+ = 15 and 40 (the two locations at which measurements were made) 
as a function of the spanwise separation d. Included in figure 8 are the osculating 
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parabolae described by the approximate (homogeneous turbulence) relations (e.g. 
Batchelor 1953) 

1 '  (6.1) 
p,,(d) = 1 -d2/21t  
p,,(d) = 1 -d2 /21 i  

where 1, = [ ? / ( a u / a ~ ) ~ ] ' / ~  and LU = [v2/(av/a~)~]'/~ are the Taylor microscales of 
u and o in the z-direction. Also shown in figure 8 are the calculations of p,, or puu 
obtained from the isotropic relation (e.g. Batchelor 1953) 

where pww(d) is the 'longitudinal' correlation coefficient, i.e. the correlation coefficient 
between spanwise velocity fluctuations in the spanwise direction. The DNS data for 
pww are used in (6.2). One does not expect isotropy to be satisfied in the wall region 
and, in this context, the inequality between puu and puv (in figure 8) is not surprising. 
It is somewhat surprising however that (6.2) satisfies the data for puu remarkably well 
at both y+ values. This agreement appears to be associated with the homogeneity 
of the velocity field in the (x,z)-plane. (Note that p,, exhibits a local minimum near 
d+ = 60, which is reasonably consistent with the expected spanwise wavelength of 
about 100 wall units for low-speed streaks). The osculating parabolae in figure 8 
clearly indicate that the magnitudes of ,Iu, 2, and 1, are different (Au < 1, < IU). 
Such a difference raises doubt on the approach of Westphal (1990) who used (6.1) 
and assumed a universal value for the Taylor microscale. While (6.1) is correct in the 
limit of d + 0, it is not an adequate approximation to puu or puu for typical values 
of d (e.g. d' = 5 corresponds to d+ = 9 at y+ = 15; this would result in puu being 
overestimated by about 30% if the value of 1, is used). 

In order to check the validity of (4.8)-(4.10), an experiment was also made in the 
wall region. Figure 9 shows the comparison between the measured and calculated 
distributions of Y,, rU and ruu at y+ = 15 and 40 respectively (for the measurements, 
p1 = 45" and p2 = 49"). The DNS data for puu and puu were used in the calculation 
and the wire length effect was neglected. (The centreline distributions of r ,  and ru 
are also shown in figure 9, these quantities being calculated from the DNS data of 
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p,, and pvv at y+ = 180. The centreline r, and ru distributions are in reasonable 
agreement with isotropic calculations, based on (6.2) and the DNS data for pww). 

The agreement between the measured and calculated distributions of r, and r, at 
y+ = 180 (not shown here) is quite good, suggesting that (4.8) and (4.9) are valid in 
the central region of the flow. But the centreline distributions of r, and rv cannot be 
used in the wall region, especially for 7m, since the distributions greatly underestimate 
r, but overestimate r,. However, at y+ = 15 and 40, there is good agreement between 
the calculated and measured distributions of r, and ru, providing support for the 
approach outlined in $4. 

The longitudinal Reynolds stress 2 (figure 9a) is underestimated when d' 2 2. 
From (4.8), r ,  can be approximated by 1 - 2K1K2/(K1 + K2)2[1 - p,,(d)], since the 
last term of (4.8) is usually much smaller than the other terms (v2/u2 << 1) and can 

_ _  
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be ignored, especially near the wall. It follows that ru is always less than 1, i.e. 2 is 
always underestimated. The variation of r, with d is also justified by the experimental 
data. For a given separation, the amount by which 2 is underestimated increases 
slightly as the wall is approached, since p,,(d) changes only slightly for different _ _  values 
of y+ (figure 8). In the case of 7, the cross-talk term is very large, because u2/v2  >> 1. 
Consequently, r, is always greater than 1 and 3 is always overestimated (by 180% at 
y+ = 40 and 600% at y+ = _ _  15 when d" = 6). This amount increases as d increases. As 
y+ + 0, r, increases since u2/v2  increases (figure 9b). Although the measured values of 
r,, (figure 9c) are more scattered than those for r, and r,, the generally upward trend 
with increasing separation seems consistent with the calculation. As y+ + 0, both 
measured and calculated values increase due to the slight asymmetries of the probe. 

To compare the present procedure with the corrections proposed by Westphal 
(1990) and Suzuki & Kasagi (1990), the present calculations of ru, r, and ru,, together 
with the corresponding results calculated from Westphal's expressions, and those 
obtained from Suzuki & Kasagi's expressions (r,, was not given in the latter case; the 
DNS data of p,, was used) are shown in figure 10 for y+ = 15. The r, distribution 
(figure 10a) is underestimated both by the correction of Suzuki & Kasagi and, more 
especially by that of Westphal. For r, (figure lob), Westphal's approach overestimates 
the distribution (40% at d' = 6) while Suzuki & Kasagi's approach underestimates 
it (40% at d' = 6). For ru, (figure lOc), Westphal's expression yields a trend (a 
decrease in r,, as d' increases) which is opposite to that of the present calculation 
and measurements. 

The above observations suggest that both Westphal and Suzuki & Kasagi's proce- 
dures do not correct the measured Reynolds stresses reasonably. The reasons for the 
relatively poor performance of Westphal's approach are probably the inadequacy of 
the assumption A, = 1, = 1," and the incorrect expression for am (Westphal 1990). 
In Suzuki & Kasagi's approach, the neglect of the p,, term may lead to significant 
errors in the correction ratios. Further, these two approaches, which do not account 
for possible asymmetries of the X-probe, become unreliable when the X-probe is not 
symmetrical. 

7. Results with a fixed separation 
While the variable separation experiments are important for obtaining reliable 

Reynolds stress data, this approach is time consuming and its implementation would 
be impractical if Reynolds stress profiles are to be obtained on a routine basis. Indeed, 
the common approach is to traverse a fixed separation X-probe across the flow. The 
present data (figures 6 and 9) suggest that a reasonable choice for d' would be 2 to 
3. In particular, Browne et al.'s (1988) recommendation that d' should be less than 3 
is incorrect since data obtained with d' < 1 are unreliable (figure 6). 

In the present experiment, a value of d = 0.65 mm was used for the fixed separation 
X-probe, corresponding to a variation in d" between _ _  3.2 at y+ = 5 and 1.8 at y+ = 180 
(channel centreline). The measured distributions of u2, u2 and UV are plotted in figure 
11 as a function of y+. Also shown are the corresponding DNS data (h+ = 180, Kim 
et al. 1987), LDV data (h+ = 169, Wei & Willmarth 1989) and PIV data (h+ = 205, 
Nishino & Kasagi 1989). The values of 7 reported by Antonia et al. (1991; see also 
Antonia et al. 1992), with an X-probe ( d  = 0.35 mm; d' = 0.9 at y+ = 180 and d' = 1.5 
at y+ = 5) in the same flow as for the present experiment, are included in figure l lb.  

Figures l l (a)  (2) and ll(c) (UV) show that the level of agreement between the 
present measurements and the other data (LDV, PIV, DNS) is quite reasonable, 
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reflectingthe adequacy of the choice of d. In the near-wall region (figure llb), the 
present u2 measurements lie above the other three sets of data. Antonia et al.’s data 
are even higher as a result of too small a value of d’ (0.9 to 1.5). 

After dividing the present data for 7m by ru, the resulting distributions (figure 
l l b )  are in quite good agreement with all the data, especially in the wall region. 
Unfortunately, the other data for srn (Antonia et al. 1992) cannot be corrected in the 
same manner because of the type of error which occurred due to too small separation. 
This difficulty is similar to that encountered when derivative measurements are made 
with parallel hot wires with a separation d’ 5 2 (Antonia et al. 1993; Zhu & Antonia 
1992, 1993). 

A check of the present data for iZ can be obtained by comparing these data with 
values of iZ calculated from the x-momentum equation 

- u u + v - = u u ,  - d U  2 (  1- -  ;) , 
dY 

and the measured distribution of U. The friction velocity U, was inferred from the 
measured pressure - gradient and U was measured with a single hot wire. The calculated 
values of -u+u+ are plotted in figure ll(c). The agreement between calculation and 
measurement is reasonable, allowing for the relatively large uncertainty in the present 
measurements in the wall region. 

The present one-dimensional spectra 4u(k1), +,(kl) and cospectra Co,,(kl) (figure 12) 
are compared with the corresponding DNS data at y+ = 15, 40 and 180 respectively. 
For the present data, the measured spectra and cospectra are used except for 4u 
and 4u at y+ = 180; for the latter two, corrected spectra are used. The level of 
agreement between measured and DNS data is reasonable for the u spectra and the 
uu cospectra. The measured u spectra (figure 12b) tend to depart from the DNS data 
at high wavenumbers, this tendency being more emphasized near the wall. 

The discrepancy between the measured and DNS spectra may be due to errors in 
both experiment and DNS data. For example, the x1 resolution of the DNS data 
may be sufficiently poor (Ax: = 11, where Axl is the grid size in the x1 direction) to 
affect the dissipation part of the computed spectra. For the measured data, the finite 
wire separation attenuates the high wavenumber part of the spectra (figure 3b). At 
the channel centreline, the amount by which 4; is underestimated is about 20% at 
k ;  = 1. If wire length effects are taken into account, this amount could be as large as 
40%. Even bigger attenuations are expected as the wall is approached. Other factors 
which may account for the discrepancy include the uses, in the measurements, of 
Taylor’s hypothesis (when converting frequencies to wavenumbers) and of a low-pass 
filter cut-off frequency. 

8. Conclusions 
The effect of separation between the wires of an X-probe on the measurement of 

the Reynolds stresses has been examined by analysis and experiment. The spectral 
correction method of Wyngaard was modified to account for the effect of the tangen- 
tial cooling of the wires and for any possible asymmetry of the probe. Experiments at 
the centreline of a turbulent channel flow, where isotropy is approximately satisfied, 
provide reasonable support for the modified analysis. The method becomes inade- 
quate in the wall region where departures from isotropy are important. However, a 
knowledge of two-point velocity correlations allows the measured Reynolds stresses 
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to be corrected. Measurements in this region indicate that the effect of wire separation 
- and effective angles is significant. Near the wall, the errors increase, especially for 
v2. Reasonable results for the Reynolds stresses and the corresponding spectra and 
cospectra can be obtained with a fixed separation probe when the separation is in the 
range 2-3 Kolmogorov length scales. This choice is justified by the agreement between 
the present results and the DNS, LDV and PIV data. Corrections are requested when 
larger separations are used. This is especially important if reliable data for 7 are to 
be obtained in the near-wall region. 

The support of the Australian Research Council is gratefully acknowledged. We 
are also most grateful to Dr J. Kim for the DNS data. 
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